
Studies seeking to define the impact of genetic and dietary metabolic deficiencies in model rodents have often measured the metabolome or transcriptome from tissue samples harvested during the day, by conveni-
ence for the researchers. Mice and rats being nocturnal, means that these measurements were made during the resting/fasting phase of these animals. Thus, conclusions may have been affected with consequences 
of these deficiencies underestimated.
We have previously shown a bidirectional link between 1-carbon metabolism and the circadian clock in many species, such that 1-carbon metabolism regulates the circadian clock and vice-versa. It is therefore very 
likely that the consequences of 1-carbon metabolism deficiencies on metabolome or transcriptome will be dependent on the time of day at which they are measured.
Here, we show that mice fed a methionine/choline deficient (MCD) diet rapidly and dramatically lose normal circadian rhythms at the behavioural and molecular levels. The MCD diet is commonly used to induce ste-
atohepatitis as a model for human NASH, but the weight loss and insulin hypersensitivity of mice under this diet are opposite to what is seen in NASH, questioning the validity of this model. Indeed, we demonstrate 
that, far from only affecting fatty acid metabolism in the liver, the MCD diet causes widespread changes in the liver and brain circadian transcriptomes and metabolomes, commensurate with changes in circadian lo-
comotor activity rhythms, highlighting the systemic effects of this diet. Importantly, we show that conclusions on the impact of dietary deficiencies are highly influenced by the time at which measurements are made, 
calling for the inclusion of circadian time in metabolic disease study designs.
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The MCD diet is a classical method to induce hepatic steatosis in rodents as a model for human non-alco-
holic steatohepatitis (NASH)1. The MCD causes a reduction in mitochondrial beta-oxidation, increased oxi-
dative stress and changes in cytokines (notably TNFa) and adipokines production leading to steatohepatitis, 
inflammation and fibrosis2-6. While NASH in humans is usually associated with obesity and insulin resist-
ance, rodents provided with an MCD diet display severe weight loss and improved insulin sensitivity, ques-
tioning the validity of the MCD model7, 8.
We propose that the MCD diet, rather than solely a model for NASH, is rather a model for systemic dietary 
methyl metabolism deficiency.  Indeed, methionine is required for the synthesis of the universal methyl 
donor S-adenosyl-L-methionine (SAM), and the MCD diet leads to a rapid decrease in SAM in the liver2. Do-
nating its methyl, SAM becomes S-adenosyl-L-homocysteine (SAH), which is then hydrolysed to homocyst-
eine and adenosine. Homocysteine can be remethylated back to methionine using either methyltetrahydro-
folate in many tissues or betaine specifically in the liver.  In the liver, choline is the precursor for betaine.
We have previously shown in vitro and in vivo that circadian rhythms are particularly sensitive to pharmaco-
logical or dietary interventions targeting the methyl cycle, and that many mRNAs coding for enzymes in-
volved in 1-carbon metabolism have circadian rhythms of expression9-13. Together with the fact that NASH 
and liver fibrosis, both conditions driven by the MCD diet, are exacerbated by circadian misalignments14, this 
highlights an intimate link between circadian rhythms and methyl metabolism.
Given the widespread rhythms in the expression of key rate-limiting enzymes and in the abundance of many 
metabolites, multi-omics analyses of metabolic diseases should take into account the time of day and the 
endogenous circadian time of the patients. Moreover, due to this cross-talk between metabolic and circadian 
rhythms, patients with dietary or genetic metabolic deficiencies may have unrecognised circadian disruption 
that may be detected by including circadian parameters in study designs. We illustrate this point by perform-
ing circadian phenotyping and multi-omics analyses in mice fed with the MCD diet. 
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Fig. 1: Mice fed the MCD diet show dramatic changes in circadian organisation of activity. A, The MCD diet 
causes shortening of the endogenous circadian period. B, Mice fed a MCD diet (right pannels) show dis-
rupted circadian organisation of wheel-running behaviour. Greyed area show when lights were turned off. 
C, Average activity profile of n = 4 mice. D, Mice (n =4) fed the MCD diet progressively lose weight. All data 
shown include equal number of male and female mice.
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Fig. 2: Circadian transcritome reprogramming in the 
SCN and liver by the MCD diet. We measured the SCN 
in the hypothalamus because it is the site of the master 
circadian clock in mammals. Data show n=3 animals per 
time points, the average values displayed as a heatmap. 
Circadian time 00 means the beginning of the rest 
phase, Circadian Time 12 the beginning of the active 
phase in constant darkness.
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Firstly, to define potential effects of the MCD diet on circadian rhythms, we fed control or MCD diet to C57-
BL/6J mice kept in constant conditions of temperature and humidity with standard 12h light/12h dark cycles 
for 10 days before being transferred to constant darkness to allow expression of endogenous circadian 
rhythms. Mice had free access to food and water, and to a running wheel connected to a circadian locomotor 
activity recording system (ClockLab, Actimetrics) (Fig. 1).

Secondly, to identify the mechanisms underlying these changes in circadian behaviour, we analysed the cir-
cadian transcriptome in the suprachiasmatic nucleus of the hypothalamus (SCN, where the master clock re-
sides). In addition, to define whether the MCD diet also had an influence on circadian rhythms in the liver, 
its primary target, we also analyse the circadian transcriptome in this tissue (Fig. 2). 

Thirdly, to understand how 1-carbon metabolism in the SCN and the liver is affected by the MCD diet, we 
measured 1-carbon metabolites in these tissues at different time points during a circadian cycle (Fig. 3).

Fig. 3: Quantification of 1-carbon metabolites in the SCN and the liver of mice fed a control or MCD diet by Liquid 
Chromatography with tandem mass spectrometry. Data show n = 4 animals with equal numbers of male and females 
at each time points and conditions.

In conclusion, the MCD diet causes changes in the liver and brain physiology, likely affecting the whole body. Importantly, the impact of dietary deficiencies is highly influenced by the time at which measurements 
are made, calling for the inclusion of circadian time in metabolic disease study designs and when patient samples are taken.

CONCLUSIONS


